
Monetary Policy and
Rational Asset Price Bubbles

Jordi Galí ∗

December 2011 (First draft: April 2011)

Abstract

I examine the impact of alternative monetary policy rules on a
rational asset price bubble, through the lens of an OLG model with
nominal rigidities. A systematic increase in interest rates in response
to a growing bubble is shown to enhance the fluctuations in the latter,
through its positive effect on bubble growth. The optimal monetary
policy seeks to strike a balance between stabilization of the bubble and
stabilization of aggregate demand. The paper’s main findings call into
question the theoretical foundations of the case for "leaning against
the wind" monetary policies.

JEL Classification No.: E44, E52

Keywords: monetary policy rules, stabilization policies, asset price
volatility.

∗Centre de Recerca en Economia Internacional (CREI), Universitat Pompeu Fabra,
and Barcelona GSE. I have benefited from comments by Pierre-Olivier Gourichas, Paolo
Pesenti and participants at the CREI Workshop on Asset Prices and the Business Cycle,
the EABCN Conference on Fiscal and Monetary Policy in the Aftermath of the Financial
Crisis, and the NBER Summer Institute. I am grateful to Alain Schlaepfer for excellent
research assistance. E-mail: jgali@crei.cat .



1 Motivation

The spectacular rise in housing prices in many advanced economies and its

subsequent collapse is generally viewed as a key factor underlying the global

financial crisis of 2007-2009, as well as a clear illustration of the dangers

associated with asset pricing bubbles that are allowed to go unchecked.

The role that monetary policy should play in containing such bubbles

has been the subject of a heated debate, well before the start of the recent

crisis. The consensus view among most policy makers in the pre-crisis years

was that central banks should focus on controlling inflation and stabilizing

the output gap, and thus ignore asset price developments, unless the latter

are seen as a threat to price or output stability. Asset price bubbles, it

was argued, are diffi cult —if not outright impossible—to identify or measure;

and even if they could be observed, the interest rate would be too blunt an

instrument to deal with them, for any significant adjustment in the latter

aimed at containing the bubble may cause serious "collateral damage" in the

form of lower prices for assets not affected by the bubble, and a greater risk

of an economic downturn.1

But that consensus view has not gone unchallenged, with many authors

and policy makers arguing that the achievement of low and stable (goods

price) inflation is not a guarantee of financial stability and calling for central

banks to pay special attention to developments in asset markets.2 Since

episodes of rapid asset price inflation often lead to a financial and economic

1See, e.g., Bernanke (2002) and Kohn (2006, 2008) for a central banker’s defense of this
view. Bernanke and Gertler (1999, 2001) provide a formal analysis in its support.

2See, e.g., Borio and Lowe (2002) and Cecchetti et al. (2000).for an early exposition of
that view.
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crisis, it is argued, central banks should act pre-emptively in the face of

such developments, by raising interest rates suffi ciently to dampen or bring

to an end any episodes of speculative frenzy—a policy often referred to as

"leaning against the wind." This may be desirable —it is argued— even if

that intervention leads, as a byproduct, to a transitory deviation of inflation

and output from target. Under this view, the losses associated with those

deviations would be more than offset by the avoidance of the potential fallout

from a possible future bursting of the bubble, which may involve a financial

crisis and the risk of a consequent episode of deflation and stagnation like

the one experienced by Japan after the collapse of its housing bubble in the

90s.3

Independently of one’s position in the previous debate, it is generally

taken for granted (a) that monetary policy can have an impact on asset

pricing bubbles and (b) that a tighter monetary policy, in the form of higher

short-term nominal interest rates, may help disinflate such bubbles. In the

present paper I argue that such an assumption is not supported by economic

theory and may thus lead to misguided policy advice. The reason for this

can be summarized as follows: in contrast with the fundamental component

of an asset price, which is given by a discounted stream of payoffs, the bubble

component has no payoffs to discount. The only equilibrium requirement on

its size is that the latter grow at the rate of interest, at least in expectation.

As a result, any increase in the (real) rate engineered by the central bank

will tend to increase the size of the bubble, even though its objective may

have been exactly the opposite. Of course, any decline observed in the asset

3See Issing (2009) or ECB (2010) for an account and illustration of the gradual evolution
of central banks’thinking on this matter as a result of the crisis.
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price in response to such a tightening of policy is perfectly consistent with

the previous result, since the fundamental component will generally drop in

that scenario, possibly more than offseting the expected rise in the bubble

component.

Below I formalize that basic idea by means of a simple asset pricing model,

with an exogenous real interest rate. That framework, while useful to con-

vey the basic mechanism at work, it fails to takes into account the bubble’s

general equilibrium effects as well as the possible feedback from the bubble

to interest rates implied by alternative monetary policies. That concern mo-

tivates the development of a dynamic general equilibrium model that allows

for the existence of rational asset pricing bubbles and where nominal interest

rates are set by the central bank according to some stylized feedback rule.

The model assumes an overlapping generations structure, as in the classic

work on bubbles by Samuelson (1958) and Tirole (1985). This is in contrast

with the vast majority of recent macro models, which stick to an infinite-

lived representative consumer paradigm, and in which rational bubbles can

generally be ruled out under standard assumptions.4 Furthermore, and in

contrast with the earlier literature on rational bubbles, the introduction of

nominal rigidities (in the form of prices set in advance) makes room for the

central bank to influence the real interest rate and, through it, the size of the

bubble. While deliberately stylized, such a framework allows me to analyze

rigorously the impact of alternative monetary policy rules on the equilibrium

dynamics of asset price bubbles. In particular, it makes it possible to as-

sess the consequences of having a central bank use its interest rate policy to

4See, e.g., Santos and Woodford (1997).
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counteract asset price bubbles in a systematic way, as has been proposed by

a number of authors and commentators.5

The paper’s main results can be summarized as follows:

• Monetary policy cannot affect the conditions for existence (or non-

existence) of a bubble, but it can influence its short-run behavior, in-

cluding the size of its fluctuations.

• Contrary to the conventional wisdom a stronger interest rate response

to bubble fluctuations (i.e. a "leaning against the wind policy") may

raise the volatility of asset prices and of their bubble component.

• The optimal policy must strike a balance between stabilization of cur-

rent aggregate demand—which calls for a positive interest rate response

to the bubble—and stabilization of the bubble itself (and hence of fu-

ture aggregate demand)—which would warrant a negative interest rate

response to the bubble. If the average size of the bubble is suffi ciently

large the latter motive will be dominant, making it optimal for the

central bank to lower interest rates in the face of a growing bubble.

The paper is organized as follows. In Section 2 I present a partial equi-

librium model to illustrate the basic idea. Section 3 develops an overlapping

generation model with nominal rigidities, and Section 4 analyzes its equilib-

rium, focusing on the conditions under which the latter may be consistent

with the presence of rational bubbles. Section 5 describes the impact on that

5The work of Bernanke and Gertler (1999, 2001) is in a similar spirit. In their frame-
work, however, asset price bubbles are not fully rational, and the optimal policy analysis
not fully microfounded.
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equilibrium of monetary policy rules that respond systematically to the size

of the bubble. Section 6 analyzes the optimal central bank response to the

bubble. Section 7 discusses some of the caveats of the analysis and presents

some tentative empirical evidence. Section 8 concludes.

2 A Partial Equilibrium Example

The basic intuition behind the analysis below can be conveyed by means of a

simple, partial equilibrium asset pricing example. Consider an economy with

risk neutral investors and an exogenous time-varying (gross) riskless rate Rt.

Let Qt denote the period t price of an infinite-lived asset, yielding a dividend

stream {Dt}. In equilibrium the following difference equation must hold:

QtRt = Et{Dt+1 +Qt+1}

In the absence of further equilibrium constraints,6 we can decompose the

asset price into two components: a fundamental component QF
t and a bubble

component QB
t . Formally,

Qt = QF
t +QB

t

where the fundamental component is defined by the present value relation

QF
t = Et

{ ∞∑
k=1

(
k−1∏
j=0

(1/Rt+j)

)
Dt+k

}
(1)

The bubble component, defined as the deviation between the asset price

and its fundamental value, must satisfy:

QB
t Rt = Et{QB

t+1} (2)

6Transversality conditions generally implied by optimizing behavior of infinite-lived
agents are often used to rule out such a bubble component (see, e.g., Santos and Woodford
(1997)). On the other hand models with an infinite sequence of finite-lived agent types,
as the one developed below, lack such transversality conditions.
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It is easy to see that, ceteris paribus, an increase in the interest rate

(current or anticipated) will lowerQF
t , the fundamental value of the asset. On

the other hand, the same increase in the interest rate will raise the expected

growth of the bubble component, given by Et{QB
t+1/Q

B
t }. Note that the

latter corresponds to the bubble’s expected return, which must equate the

interest rate under the risk neutrality assumption made here. Hence, under

the previous logic, any rule that implies a systematic positive response of the

interest rate to the size of the bubble, will tend to amplify the movements

in the latter—an outcome that calls into question the conventional wisdom

about the relation between interest rates and bubbles.

Changes in interest rates, however, may affect the bubble through a sec-

ond channel: the eventual comovement between the (indeterminate) innova-

tion in the bubble with the surprise component of the interest rate. To see

this note that the evolution over time of the bubble component of the asset

price above is given by the process

QB
t = QB

t−1Rt−1 + ξt

where {ξt} a zero mean martingale-difference process, which may or may

not be related to fundamentals.7 The dependence on the latter process is a

reflection of the inherent indeterminacy of the bubble size. As a result, the

contemporaneous impact of an interest rate increase on the size of the bubble

depends on what one assumes regarding the correlation between the interest

rate innovation, Rt − Et−1{Rt}, and the martingale-difference variable ξt.

Thus, and without loss of generality, one can write

ξt = ξ∗t + ψr(Rt − Et−1{Rt})
7Formally, {ξt} satisfies Et−1{ξt} = 0 for all t.
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where {ξ∗t} is a zero-mean martingale-difference process orthogonal to in-

terest rate innovations at all leads and lags, i.e. E{ξ∗tRt−k} = 0, for k =

0,±1,±2, ....Note that neither the sign nor the size of ψr are pinned down

by the theory. Accordingly, the impact of an interest rate innovation (or of

any other shock) on the bubble is, in principle, indeterminate.

In what follows I assume that {ξt} is a "pure" sunspot shock, i.e. one

orthogonal to fundamentals (i.e., ψr = 0 in the formulation above). This

seems a natural benchmark assumption. In that case a change in the interest

rate does not affect the current size of the bubble, but only its expected

growth rate. Most importantly, the previous discussion makes clear that any

case for "leaning against the wind" policies based on a negative value for

ψr would rest on extremely fragile grounds, at least from the viewpoint of

economic theory.

The relation between monetary policy and asset price bubbles illustrated

by the simple example in the present section is at odds with the conventional

wisdom, which invariably points to an interest rate hike as the natural way

to disinflate a growing bubble. One might argue that the partial equilibrium

nature of the previous example may be misleading in that regard, by not

taking into account the existence of aggregate constraints that may impose

limits on the size of the bubble and hence on its survival. Furthermore, the

type of policy intervention considered (i.e. an exogenous change in the real

rate) is arguably less relevant than a policy rule determining the systematic

response of the nominal interest rate to movements in the size of the bubble.

The remainder of the paper provides an example of possible failure of

the conventional wisdom regarding the effects of leaning against the wind
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policies. The analysis is grounded in a general equilibrium setting, with the

central bank following a well defined interest rate rule and, hence, is immune

to the potential criticisms mentioned above.

3 Asset Pricing Bubbles in a Simple OLG
Model with Nominal Rigidities

As a laboratory for the analysis of the impact of monetary policy on asset

pricing bubbles I develop a highly stylized overlapping generations model

without capital and where labor is supplied inelastically. In equilibrium,

aggregate employment and output are shown to be constant, as in an en-

dowment economy The assumptions of monopolistic competition and price

setting in advance, however, imply that monetary policy is not neutral. In

particular, by influencing the path of the real interest rate, the central bank

can affect real asset prices (including those of bubbly assets) and, as a result,

the distribution of consumption across cohorts and welfare.

3.1 Consumers

Each individual lives for two periods. Individuals born in period t seek to

maximize expected utility

logC1,t + βEt{logC2,t+1}

where C1,t ≡
(∫ 1

0
C1,t(i)

1− 1
ε di
) ε
ε−1

and C2,t+1 ≡
(∫ 1

0
C2,t+1(i)

1− 1
ε di
) ε
ε−1

are

the bundles consumed when young and old, respectively. Note that, in each

period, there is a continuum of differentiated goods available, each produced

by a different firm, and with a constant elasticity of substitution given by ε.
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Goods (and the firms producing them) are indexed by i ∈ [0, 1]. The size of

each cohort is constant and normalized to unity.

Each individual is endowed with the "know-how" to produce a differenti-

ated good, and with that purpose he sets up a new firm. That firm becomes

productive only after one period (i.e. when its founder is old) and only for

one period; after that it no longer produces any output.8 An individual born

in period t and setting up firm i ∈ [0, 1] can raise funds by selling stocks

at a price Qt|t(i). Each stock is a claim to a share in the firm’s one-period

ahead dividend, Dt+1(i), but it can also be traded at t + 1 and subsequent

periods at a price Qt+k|t(i), for k = 1, 2, ...Note that after one period the

stock become a pure bubble, since it no longer constitutes a claim on any

future dividends.9 Henceforth, and to simplify the notation, I drop the firm

subindex i if not strictly needed.

Each young individual sells his labor services inelastically, for a (real)

wage Wt. With that income and the proceeds from the sale of his firm’s

equity, he consumes C1,t and purchases two types of assets: (i) one-period

nominally riskless discount bonds yielding a nominal return it and (ii) shares

in new and old firms, in quantities St|t−k and prices Qt|t−k, for k = 0, 1, 2, ...,

where the t−k subindex refers to the period of creation of the corresponding

firm.
8This is just a convenient device to avoid having infinite-lived firms, whose market

value would not be bounded under the conditions that make it possible for a bubble to
exist.

9The previous assumption allows me to have an asset (stocks) whose price potentially
has both a fundamental and a bubble component (albeit they coexist only transitorily).
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Accordingly, the budget constraint for the young at time t is given by:∫ 1

0

Pt(i)C1,t(i)

Pt
di+

Zt
Pt

exp{−it}+

∞∑
k=0

Qt|t−kSt|t−k = Wt +Qt|t

where Pt ≡
(∫ 1

0
Pt(i)

1−εdi
) 1
1−ε

is the aggregate price index and Zt denotes

the quantity of nominally riskless one-period discount bonds purchased at a

price exp{−it}, with it being the (continuously compounded) yield on those

bonds (henceforth referred to as the nominal interest rate).

When old, the individual consumes all his wealth, which includes the

dividends from his portfolio of stocks, the market value of that portfolio, and

the payoffs from his maturing bond holdings. Formally,∫ 1

0

Pt+1(i)C2,t+1(i)

Pt+1
di =

Zt
Pt+1

+Dt+1St|t +
∞∑
k=0

Qt+1|t−kSt|t−k

The optimal allocation of expenditures across goods yields the familiar

demand functions:

C1,t(i) =

(
Pt(i)

Pt

)−ε
C1,t (3)

C2,t+1(i) =

(
Pt+1(i)

Pt+1

)−ε
C2,t+1 (4)

for all i ∈ [0, 1], which in turn imply
∫ 1
0

Pt(i)C1,t(i)

Pt
di = C1,t and

∫ 1
0

Pt+1(i)C2,t+1(i)

Pt+1
di =

C2,t+1.

The remaining optimality conditions associated with the consumer’s prob-

lem take the following form:

C1,t = (1/(1 + β))
(
Wt +Qt|t

)
(5)

exp{−it} = Et {Λt,t+1(Pt/Pt+1)} (6)

10



Qt|t−k =

{
Et
{

Λt,t+1(Dt+1 +Qt+1|t
}

for k = 0
Et
{

Λt,t+1Qt+1|t−k
}

for k = 1, 2, ...
(7)

and where Λt,t+1 ≡ β(C1,t/C2,t+1) is the relevant stochastic discount factor.

Note that once a firm has paid its one-time dividend, its shares become a pure

bubble, whose market price reflects investors’expectations of the (properly

discounted) price at which they will be able to resell it in the future, as made

clear by equation (7).

Finally, and for future reference, I define the real interest rate as

rt ≡ it − Et{πt+1}

where πt ≡ log(Pt/Pt−1) is the rate of inflation between t− 1 and t.

3.2 Firms

Each individual, endowed with the "know-how" to produce a differentiated

good, sets up a firm that becomes productive after one period (when its

founder is "old"). Then the firm operates under the technology:

Yt(i) = Nt(i) (8)

where Yt(i) and Nt(i) denote firm i’s output and labor input, respectively,

for i ∈ [0, 1]. After its operational period (i.e., once its founder dies) the

firm becomes unproductive (with its index i being "transferred" to a newly

created firm).

Each firm behaves as a monopolistic competitor, setting the price of its

good in order to maximize its value subject to the demand constraint Yt(i) =(
Pt(i)
Pt

)−ε
Ct, where Ct ≡ C1,t + C2,t. If one assumes that firms set the price

of their good after the shocks are realized, then they choose a price P ∗t equal

11



to a constant gross markupM≡ ε
ε−1 times the nominal marginal cost PtWt.

Hence, under flexible prices:

P ∗t =MPtWt

In a symmetric equilibrium, P ∗t = Pt, thus implying a constant real wage

Wt = 1/M.

I introduce nominal rigidities by assuming that the price of each good is

set in advance, before the shocks are realized. Thus, the price of a good that

will be produced and sold in period t, denoted by P ∗t , is set at the end of

t− 1 in order to maximize the firm’s fundamental value

Et−1

{
Λt−1,tYt

(
P ∗t
Pt
−Wt

)}
subject to the demand schedule Yt =

(
P ∗t
Pt

)−ε
Ct. The implied optimal price

setting rule is then given by

Et−1

{
Λt−1,tYt

(
P ∗t
Pt
−MWt

)}
= 0 (9)

3.3 Stock Prices: Fundamental and Bubble Compo-
nents

For future reference, it is convenient to define at this stage the two compo-

nents that constitute the price of a stock, as well as its aggregate counter-

parts. For a firm created in period t, the initial fundamental value, denoted

by QF
t|t, is given by its expected discounted dividend. For firms created in

earlier periods and unproductive in period t, the fundamental value is zero.

Formally,

QF
t|t−k =

{
Et {Λt,t+1Dt+1} for k = 0

0 for k = 1, 2, ...
(10)
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Letting QF
t ≡

∑∞
k=0Q

F
t|t−k denote the aggregate fundamental value of

existing stocks, it follows trivially that

QF
t = Et {Λt,t+1Dt+1} (11)

The bubble component of a stock, denoted by QB
t|t−k, is defined as the

difference between its market price and its fundamental component. Given

(7) and (10), we have:

QB
t|t−k = Et

{
Λt,t+1Q

B
t+1|t−k

}
(12)

for k = 0, 1, 2, ....and all t. Note also that free disposal requires that QB
t|t−k ≥

0 for k = 1, 2, .... Thus, it follows from (12) that QB
t|t ≥ 0 as well. In other

words, the market price of a stock cannot lie below its fundamental value.

For notational convenience I henceforth use Ut ≡ QB
t|t ≥ 0 to denote the

initial bubble component in the price of a stock introduced in period t. For

simplicity, I assume that such a bubble component is identical across stocks

issued in period t, and refer to it as the new bubble. The analysis below is

simplified, with little loss of generality, by assuming that ut ≡ logUt follows

an i.i.d. process with mean u and variance σ2u.

Let Bt ≡
∑∞

k=1Q
B
t|t−k denote the aggregate market value of stocks intro-

duced in earlier periods, and which currently constitute a pure bubble (since

they will not yield any future dividends). Thus Bt can be thought of as the

current size of the pre-existing bubble. One can then use (12) to derive an

equation describing the dynamics of the aggregate bubble:

QB
t ≡ Bt + Ut = Et {Λt,t+1Bt+1} (13)
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3.4 Monetary Policy

The central bank is assumed to set the short-term nominal interest rate it

according to the following rule:

it = r + Et{πt+1}+ φππt + φbq̂
B
t (14)

where q̂Bt ≡ log(QB
t /Q

B) is the log deviation of the bubble from its steady

state value. Note that under the above rule the real interest rate responds

systematically to fluctuations in inflation and the size of the bubble, with a

strength indexed by φπ and φb, respectively.
10 Henceforth I assume φπ > 0,

which guarantees the existence and uniqueness of an equilibrium character-

ized by stationary fluctuations.

Note that, by adopting the specification above I abstract from the diffi -

culties in identifying the presence of a bubble and determining its size that

undoubtedly arise in practice and which constitute one of the arguments

mada by critics of "leaning gainst the wind" policies. The focus of the analy-

sis below is thus the desirability of having the central bank respond to bubble

fluctuations, leaving aside practical questions of implementation.

10As an alternative I have also analyzed the specification

it = r + φππt + φbq̂
B
t

The main qualitative results obtained under (14) carry over to this alternative specifi-
cation, though the analysis is (algebraically) more complicated in the latter case.
Similarly, the more general rule

it = r + φππt + φbb̂t + φuût

does not yield any further insights and can be shown to collapse to rule of the form (14)
under the optimal policy. In order to keep the algebra as simple as possible I stick to (14)
in what follows.
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4 Equilibrium

In the present section I derive the model’s remaining equilibrium conditions.

The clearing of the market for each good requires that Yt(i) = C1,t(i)+C2,t(i)

for all i ∈ [0, 1] and all t. Letting Yt ≡
(∫ 1

0
Yt(i)

1− 1
ε di
) ε
ε−1

denote aggregate

output, we can use the consumer’s optimality conditions (3) and (4) to derive

the aggregate goods market clearing condition:

Yt = C1,t + C2,t (15)

=

(
1

1 + β

)(
Wt +QF

t + Ut
)

+ (Dt +Bt)

where the second equality follows from (5) and the fact that C2,t = Dt +Bt.

The latter result is a consequence of the market clearing requirement that

Zt = 0 for all t, since all households in a given cohort are identical (and hence

do not trade any assets among themselves), and there is no room for credit

transactions between households from different cohorts.

Labor market clearing implies

1 =

∫ 1

0

Yt(i)di

= (C1,t + C2,t)

∫ 1

0

(Pt(i)/Pt)
−εdi

= Yt (16)

where the third equality follows from (15) and the fact that all firms set

identical prices in equilibrium. Thus, aggregate output supply is constant

and equal to unity.

Adding the budget constraint of the two cohorts coexisting in period t we

obtain C1,t + C2,t = Wt +Dt, which combined with (15) and (16) implies

Dt +Wt = 1 (17)

15



Finally, evaluating the optimal price-setting condition at the symmetric

equilibrium and using C2,t = Dt +Bt we have:

Et−1 {(1/(Dt +Bt)) (1−MWt)} = 0 (18)

Equations (15) through (18), combined with (11), (13) and (14) intro-

duced earlier, describe the equilibrium dynamics of the model economy. In

order to make some progress in describing those dynamics, however, the

analysis below focuses on the log-linearized system around a deterministic

steady state. I start by characterizing the latter.

4.0.1 Steady State

Next I consider a deterministic steady state in which all real variables are

constant with Ut = U ≡ E{Ut}, and study under what conditions a positive

bubble may arise in that steady state. The following equations characterize

the steady state values of the model’s main aggregate variables:

Y = 1

W = 1/M

D = 1− 1/M

QF = (1/R)(1− 1/M)

QB = U/(1−R) (19)

B = (R/(1−R))U (20)

R = (1/β)(1− 1/M+B)/(1/M−B) ≡ R(B) (21)

π = 0
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where R ≡ exp{r} can be interpreted the steady state (gross) real interest

rate.

As made clear by (19) and (20), in order for a well defined steady state

with a positive bubble (henceforth, a "bubbly steady state") to exist we

require that R ∈ (0, 1), thus implying a negative (net) real interest rate.

The need for this condition is well understood: in its absence the bubble

would grow unboundedly, so no steady state would exist. Furthermore, that

unbounded growth in the size of the bubble would eventually lead to a vi-

olation of the resource constraint, and it would thus be inconsistent with

equilibrium.11 Note also that non-negativity of consumption of the young

cohort requires that B ∈ (0, 1/M), i.e. the size of the existing bubble can-

not be larger than the resources of the young. Combining both requirements

with steady state condition (21) allows us to state the following Lemma

Lemma 1: A necessary and suffi cient condition for the existence of a

bubbly steady state is given by

M < 1 + β (22)

Proof: (Necessity) Note that R(B), as defined in (21), is a continuous,

strictly increasing function ofB. In order for a bubbly steady state to exist we

must haveR(0) = (M−1)/β < 1, for otherwise R > 1 for any B ∈ (0, 1/M).

(Suffi ciency) IfM < 1 + β, then R(0) = (M− 1)/β < 1 ∈ (0, 1), implying

that R(B) < 1 for some B ∈ (0, 1/M).

11As is well known, the introduction of secular productivity growth.makes it possible to
reconcile the existence of a bubbly steady state with a positive real interest rate (see, e.g.
Tirole (1985)). See below for further discussion.
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Remark #1. Note that (22) is equivalent to R(0) < 1, which corresponds

to a negative (net) interest rate in the bubbleless steady state. The latter

is in turn associated with a Pareto suboptimal allocation since it implies

1/C1 < β/C2.and, hence, the possibility of making all cohorts better of by

transferring resources from the young to the old (which is what a bubble

does). A similar condition holds in the models of Samuelson (1958) and

Tirole (1985).

Remark #2. Condition (22) implies an upper bound BU ≡ 1/M−1/(1+

β) on the steady state size of the bubble, determined by R(BU) = 1 Note

that BU < 1/M, i.e. this new upper bound is more stringent than the one

associated with a non-negative consumption for the young.

Remark #3. The existence of a bubbly steady state implies the existence

of a continuum of them, represented by the set {(B,R)|R = R(B), B ∈

(0, BU)}. That set is represented by the solid line in Figure 1, under the

assumption that β = 1 andM = 1.2. I henceforth refer to the latter as the

baseline calibration.12

4.0.2 Extension: The Case of Positive Deterministic Growth

The analysis above has been conducted under the assumption of a stationary

technology. Consider instead a technology Yt(i) = AtNt(i) with constant pro-

ductivity growth, i.e. At = Γt and Γ > 1. It is easy to check that under this

modified technology the model above implies the existence of an equilibrium

with balanced growth. In particular, it can be easily shown that all the equi-

librium conditions derived above still hold, with the original real variables
12None of the qualitative results emphasized below hinge on the particular calibration

used, as long as it satisfies.the condition for existence of a bubbly steady state.
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(output, consumption, dividend, wage, stock prices, and, eventually, bub-

ble size) now normalized by parameter At, and with Rt being replaced with

R̃t ≡ Rt/Γ. Accordingly, a bubble can exist along the balanced growth path

(i.e. a steady state of the normalized system) only if R̃ < 1 or, equivalently,

R < Γ, i.e. as long as the real interest rate is below the economy’s growth

rate. Such a bubble would be growing at the same rate as the economy. An

analogous result was shown in Samuelson (1958) and Tirole (1985), among

others. That extension allows one to reconcile the existence of a bubbly

equilibrium with the steady state (net) real interest rate being positive.

4.0.3 Linearized Dynamics

Next I linearize the model’s equilibrium conditions around the zero inflation

steady state and analyze the resulting system of difference equations. Unless

otherwise noted I use lower case letters to denote the log of the original

variable, and the symbol̂to indicate the deviation from the corresponding

steady state value. The resulting equilibrium conditions are:

0 = q̂Ft + βRd̂t + εB(1 + β)Rb̂t + εB(1−R)ût (23)

q̂Bt = Et{b̂t+1} − r̂t (24)

q̂Ft = Et{d̂t+1} − r̂t (25)

q̂Bt = Rb̂t + (1−R)ût (26)

r̂t = ît − Et{πt+1} (27)

ît = Et{πt+1}+ φππt + φbq̂
B
t (28)

19



Under flexible prices the real wage and the aggregate dividend are con-

stant, implying

ŵt = d̂t = 0 (29)

On the other hand, under sticky prices, log-linearization of (18) yields

Et−1{ŵt} = Et−1{d̂t} = 0 (30)

i.e. both wages and dividends remain, in expectation, at their steady state

value. Finally, note that one can combine (24) and (26) to obtain

b̂t = Rb̂t−1 + (1−R)ût−1 + r̂t−1 + ξt (31)

where {ξt} is an arbitrary martingale-difference process (i.e. Et−1{ξt} = 0 for

all t). As discussed above, and in order to avoid embedding in the model an

arbitrary link between monetary policy and the size of the bubble, I assume

that ξt is an exogenous sunspot shock. By making this assumption I force

monetary policy to influence the size of the bubble only through the interest

rate channel and not through an (arbitrary) indeterminacy channel.

4.1 Natural Equilibrium

I refer to the equilibrium under flexible prices as the natural equilibrium,

and denote the corresponding equilibrium values with a superscript ”n”. As

discussed above, when firms can adjust freely their prices once the shocks

are realized, they optimally choose to maintain a constant gross markupM.

This, in turn, implies that the wage and dividend remain constant at their

steady state values. As a result, the goods market clearing condition (23),

combined with (25), implies:

r̂nt = εB(1 + β)Rb̂nt + εB(1−R)ût (32)
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The previous condition makes clear that the real interest rate is, as ex-

pected, independent of monetary policy.under flexible prices. Plugging the

previous result in (31):

b̂nt = χb̂nt−1 + (1−R)(1 + εB)ût−1 + ξt

where χ ≡ R(1 + εB(1 + β)). Stationarity of the bubble requires χ ∈ [0, 1),

which I henceforth assume.13 Note that the latter condition will always be

satisfied for a suffi ciently small steady state bubble B, given the continuity

and monotonicity of R(B) and the fact that limB→0 χ = R(0) < 1 holds

whenever a bubbly steady state exists (as assumed here). Furthermore, note

that R(B)(1 + εB(1 + β)) = 1 implicitly defines an upper bound B > 0

on the size of the steady state bubble consistent with stationarity of bubble

fluctuations. It can be easily checked that the upper bound implied by the

previous stationarity requirement is tighter than the one associated with the

existence of a deterministic bubbly steady state, i.e. B < BU ≡ 1/M−

1/(1 + β).14 The circled locus in Figure 1 displays the subset of bubbly

steady states that are consistent with stationary fluctuations in the size of

the bubble.

Note that under flexible prices, monetary policy has no influence on the

evolution of the bubble, due to its inability to affect the real interest rate.

Naturally, though, monetary policy can influence inflation (and other nomi-

nal variables). In particular, equilibrium inflation can be derived by combin-

ing the interest rate rule (28) with (26) and (32) to yield:

13That stationarity assumption also justifies the use of methods based on a log-linear
approximation of the equilibrium conditions.
14This can be proved by noting that (i) both χ(B) and R(B) are strictly increasing in

B, (ii) χ(0) = R(0) and (iii) χ(B) > R(B) for all B ∈ (0, BU ).
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πt = −(1/φπ)
(

(φb − εB(1 + β))Rb̂nt + (φb − εB)(1−R)ût

)
Not surprisingly the impact of bubbles on inflation is not independent of

the monetary policy rule. In particular, we see that some positive systematic

response of the interest rate to the aggregate bubble (φb > 0) is desirable

from the viewpoint of inflation stabilization. More precisely, the value of

φb that minimizes the variance of inflation under flexible prices is given by

φb = εB(1 + λβ) > 0, where λ ≡ R2var{b̂nt }/(R2var{b̂nt } + (1 − R)2σ2u).

Of course, there is no special reason why the central bank would want to

stabilize inflation in the present environment, so I do not analyze this issue

further here.15

4.2 Sticky Price Equilibrium

As discussed above, in the presence of sticky prices we have

Et−1{ŵt} = Et−1{d̂t} = 0 (33)

for all t. Note also that the fact that prices are predetermined implies:

Et−1{πt} = πt (34)

Combining the previous equations with equilibrium conditions (24), (27)

and (28) one can derive the following closed form solution for the evolution

15It is easy to check that the central bank could fully stabilize inflation in this case if it
could identify and respond separately to existing and new bubbles with a rule

ît = φππt + Θbb̂t + Θuût
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of the bubble (see Appendix for details):

b̂t = χb̂t−1 + (φb + 1)(1−R)ût−1 + ξt + (φb − εB(1 + β))Rξt−1 (35)

Thus we see that fluctuations in the size of bubble follow an ARMA(1,1)

process. The persistence of those fluctuations, as measured by the autore-

gressive coeffi cient χ ≡ R(1 + εB(1 + β)), is the same as in the natural

equilibrium and, hence, independent of monetary policy. The latter, how-

ever, can influence the bubble’s overall size and volatility through the choice

of interest rate rule coeffi cient φb, as made clear by (35). This is discussed

in detail in the following section.

Through its influence on the size of the bubble b̂t and on the fundamental

component of stock prices, q̂Ft = −r̂t, monetary policy will in turn affect the

allocation of aggregate consumption between the cohorts coexisting at any

point in time, thus affecting welfare.

On the other hand, equilibrium inflation is given by the AR(1) process16

πt = χπt−1 − (1/φπ) (φb − εB(1 + β)R) (φb + 1)εt−1

where εt ≡ Rξt + (1−R)ût is the innovation in the aggregate bubble (which

in turn is a result of innovation in the pre-existing bubble as well as the new

bubble). Thus, we see that inflation inherits the persistence of the aggregate

bubble and is influenced by innovations in the latter as well as by the size of

the new bubbles, interacting with the central bank’s feedback ru le.

16See Appendix for details.
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5 The Impact of Monetary Policy on Bubble
Dynamics

As made clear by the analysis in the previous section, the existence of bubbles

in the present model economy is not a monetary phenomenon. In other

words, the conditions for their existence do not depend on how monetary

policy is conducted.

When prices are flexible, monetary policy is neutral vis a vis the bubble:

it cannot have an effect either on its size or on its persistence. Nevertheless,

and given that fluctuations in the size of the bubble affect the natural rate

of interest, the monetary authority may want to respond systematically to

bubble developments if it wishes to stabilize inflation. In particular, it will

have to raise the interest rate in response to increases in the size of the

bubble.

On the other hand, in the presence of nominal rigidities, monetary policy

can have an effect on the size and volatility of the anticipated component

of the bubble, b̂et ≡ Et−1{b̂t}. As shown in the Appendix, the latter evolves

according to the simple AR(1) process:

b̂et = χb̂et−1 + (φb + 1)εt−1 (36)

where, again, εt ≡ Rξt + (1−R)ût.

Thus we see that the influence of monetary policy on the anticipated com-

ponent of the bubble works through the choice of the interest rate coeffi cient

φb. To see how that choice influences the volatility of the aggregate bubble

q̂Bt note that (36), together with the fact that

q̂Bt = Rb̂et + εt (37)
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implies

var{q̂Bt } =

(
R2(φb + 1)2

1− χ2 + 1

)
σ2ε (38)

where σ2ε ≡ R2σ2ξ + (1 − R)2σ2u is the variance of the aggregate bubble in-

novation. That relation is illustrated graphically in Figure 2, which displays

the standard deviation of the aggregate bubble as a function of φb.
17

An analysis of that relation yields several results of interest (all of which

are reflected in Figure 1). Firstly, equation (38) implies that a "leaning

against the wind" policy (corresponding to φb > 0) generates a larger volatil-

ity in the bubble size than a policy of "benign neglect" (φb = 0). Secondly,

and conditional on φb ≥ 0, the stronger is the positive feedback from the bub-

ble to the interest rate, the larger is the volatility of the former (!). Finally,

the central bank can minimize the bubble volatility by setting φb = −1 < 0 a

policy which fully stabilizes the anticipated component of the bubble (i.e. it

implies b̂et = 0, for all t). In other words, stabilization of bubble fluctuations

requires that the interest rate be lowered in response to positive innovations

in existing or new bubbles, a finding clearly at odds with conventional wis-

dom.

We can also use the equilibrium expression for the fundamental stock

price (as derived in Appendix 1):

q̂Ft = −εB(1 + β)Rb̂et − φbεt

together with the fact that

q̂t = (1− ΓB)q̂Ft + ΓB q̂
B
t

17The following calibration is assumed: β = 1,M = 1.2, B = 0.1 and σ2ξ = σ2u = 0.01.
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where ΓB ≡ εB
εB+1

∈ [0, 1] in order to derive expressions for their respective

variances. Figure 3 displays the volatility of the stock price index q̂t, together

that of its fundamental and bubble components,q̂Ft and q̂
B
t , as a function of

coeffi cient φb. Note that the three mappings are non-monotonic and increas-

ing after a certain threshold (different in each case) is reached. Thus, we see

that an aggressive "leaning against the wind" policy in response to bubbles

may have a potentially destabilizing effect on stock prices, as well as in their

fundamental and bubble components.

Equilibrium inflation in the economy with sticky prices satisfies

πt = −(R/φπ)(φb − εB(1 + β))̂bet

i.e., inflation is proportional to the anticipated bubble. Thus, the central

bank can follow three alternative strategies if it seeks to stabilize inflation.

First, it can respond very strongly to inflation itself (by setting φπ arbitrarily

large, for any finite φb). Secondly, it can adjust interest rates in response to

fluctuations in the bubble with a strength given by φb = Θb (while setting

φπ at a finite value) Doing so exactly offsets the impact of the bubble on

(expected) aggregate demand, thus neutralizing its impact on inflation. Note

that neither of these policies eliminates fluctuations in the bubble, they just

prevent the latter from affecting the aggregate price level. Finally, the central

bank may choose to stabilize the anticipated component of the bubble b̂et ,

which can be achieved by setting φb = −1, as discussed above. The latter

result illustrates how the emergence of an aggregate bubble and the existence

of fluctuations in the latter do not necessarily generate a policy trade-off
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between stabilization of the bubble and stabilization of inflation.18

Note however that in the economy above, with synchronized price-setting

and an inelastic labor supply, inflation is not a source of welfare losses. Ac-

cordingly, and within the logic of the model, there is no reason why the

central bank should seek to stabilize inflation. It is also not clear that mini-

mizing the volatility of the aggregate bubble constitutes a desirable objective

in itself. In order to clarify those issues, the next section analyzes explicitly

the nature of the model’s implied optimal policy.

6 Optimal Monetary Policy in the Bubbly
Economy

Next I turn to an analysis of the optimal response of monetary policy to

asset price bubbles in the model economy developed above. I take as a

welfare criterion the unconditional mean of an individual’s lifetime utility.

In a neighborhood of the steady state that mean can be approximated as

E{logC1,t + β logC2,t+1} ' logC1 + β logC2 − (1/2)(var{ĉ1,t}+ βvar{ĉ2,t})

where ĉi,t ≡ log(Ci,t/Ci) for i = 1, 2.

Note that the goods market clearing condition C1,t + C2,t = 1 implies

that var{ĉ1,t} is proportional to var{ĉ2,t}. Thus, a central bank that seeks

to maximize welfare under the criterion set above will choose the interest

rate rule coeffi cients that minimize the variance of

ĉ2,t = (1− ΓB)d̂t + ΓB b̂t

18The absence of a trade-off obtains when, as assumed above, bubble shocks are the
only source of uncertainty in the economy. Other sources of fluctuations may require
interest rate adjustments in order to stabilize inflation, which in turn may induce additional
volatility in the size of the bubble.
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where ΓB ≡ εB
εB+1

∈ [0, 1]

That objective poses a dilemma for the central bank. To see this note

that, as derived in the Appendix, dividends are given by

d̂t ∝ (φb − εB(1 + β))Rξt + (φb − εB)(1−R)ût

Thus, minimizing the volatility of dividends calls for setting φb = εB(1 +

βR2(σ2ξ/σ
2
ε)) > 0. Note that such a policy would require adjusting the inter-

est rate upward in response to positive bubble shocks, in order to stabilize

aggregate demand and to prevent upward (downward) pressure on wages

(dividends) from emerging. However, as discussed in the previous section,

such a policy would amplify the impact of current bubble shocks on the fu-

ture size of the bubble, through the effect of interest rates on bubble growth,

thus contributing to destabilization of cohort-specific consumption through

that channel. In fact, and as discussed above, minimizing the volatility of

cohort-specific consumption resulting from bubble fluctuations calls for set-

ting φb = −1 < 0. Note finally that neither the volatility of dividends nor

that of the bubble depend on the inflation coeffi cient φπ.

The welfare-maximizing choice of φb will naturally seek a compromise

between stabilization of dividends and stabilization of the bubble size. For-

mally, the optimal coeffi cient minimizes

var{(1− ΓB)d̂t + ΓB b̂t} ∝
(

(φb − εB)2 +
(βRεB)2(φb + 1)2

1− χ2

)
σ2ε

Figure 4 displays the expected welfare loss as a function of φb, under the

model’s baseline calibration. The minimum of that loss function determines
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the optimal interest rate coeffi cient. The latter can be written as:

φ∗b = (−1)ΨB + εB(1−ΨB) (39)

where ΨB ≡ (βRεB)2

1−χ2+(βrεB)2 ∈ [0, 1] is an increasing function of B, the steady

state size of the bubble (relative to the economy’s size).

Thus, the optimal strength of the central bank’s response to the bubble

is a nonlinear function of the average size of the latter, as well as other

exogenous parameters. Figure 5 displays the optimal coeffi cient φ∗b as a

function of B, under the baseline calibration for the remaining parameters.

Note that the mapping is non-monotonic: φ∗b is shown to be first increasing,

and then decreasing, in the size of the bubble. As the steady state size of the

bubble approaches zero, so does the optimal coeffi cient, i.e. limB→0 φ
∗
b = 0.

On the other hand, as B approaches its maximum value consistent with

stationarity, the optimal coeffi cient converges to (minus) the corresponding

interest rate, i.e. limB→B φ
∗
b = −1 < 0. Hence, given a suffi ciently large

steady state bubble, it is optimal for the central bank to lower interest rates

in response to a rise in the size of the bubble.

The latter finding illustrates that the optimal monetary policy strategy

in response to asset price bubbles does not necessarily take the form of a

"leaning against the wind" policy or one of just "benign neglect".

7 Discussion and Some Evidence

The main purpose of the present paper has been to call into question the

theoretical underpinnings of proposals for "leaning against the wind" mon-

etary policies with respect to asset price developments. According to those
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proposals central banks should raise interest rates in the face of a developing

asset price bubble, in order to tame it or eliminate it altogether. The analy-

sis above has shown that, at least when it comes to a rational asset pricing

bubble, such a policy may be counterproductive and lead instead to larger

bubble fluctuations and possibly lower welfare as well. In the example econ-

omy developed above, it is generally desirable from the viewpoint of bubble

stabilization (and, under some assumptions, from a welfare perspective as

well) to pursue the opposite policy. That finding, which is a consequence of a

basic arbitrage constraint that must be satisfied by a rational bubble, seems

to have been ignored (or, at least, swept under the rug) by proponents of

leaning against the wind policies.

To be clear, it is not my intention to suggest that policies that seek to

prevent the emergence of bubbles or its excessive growth are necessarily mis-

guided, but only to point out that certain interest rate policies advocated by

a number of economists and policymakers may not always have the desired

effects. There are at least three assumptions in the model above which un-

doubtedly play an important role in accounting for my findings. I discuss

them briefly next.

Firstly, I have assumed that there is no systematic impact of interest rate

surprises on the "indeterminate" component of the bubble. Some readers

may find that assumption arbitrary. But it would be equally arbitrary to

assume the existence of a systematic relation of a given size or sign. Whether

that systematic relation exists is ultimately an empirical issue, but one that

will not be settled easily given the inherent unobservability of bubbles. In

any event, the analysis in the present paper points to the fragility of the
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foundations of a leaning against the wind policy advocated on the basis of

such a systematic relation.

Secondly, the asset pricing bubbles introduced in the above model econ-

omy are of the rational type, i.e. they are consistent with rational expec-

tations on the part of all agents in the economy. In actual economies there

may be asset price deviations from fundamentals that are different in nature

from the rational bubbles considered here and for which leaning against the

wind interest rate policies may have more desirable properties. Assessing

that possibility would require the explicit modelling of the nature of devia-

tions from fundamentals, and how those deviations are influenced by interest

rate policy. Of course, one should not rule out the possibility that different

models of non-rational bubbles may lead to entirely different implications

regarding the desirability of leaning against the wind policies.

Thirdly, the analysis above has been conducted in a model economy with

no explicit financial sector and no financial market imperfections (other than

the existence of bubbles). In fact, the assumption of a representative con-

sumer in each cohort implies that the only financial transactions actually

carried out are the sale of stocks by the old to the young, but no credit

is needed (in equilibrium) to finance such transactions. By contrast, much

of the empirical and policy-oriented literature has emphasized the risks as-

sociated with the rapid credit expansion that often accompanies (and helps

finance) asset price booms.19 It is not clear, however, that a tighter monetary

policy may be the best way to counter the credit-based speculative bubbles

that may arise in this context, as opposed to a stricter regulatory and super-

19See, e.g., Schularick and Taylor (2009).
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visory framework with the necessary tools to dampen the growth of credit

allocated to (potentially destabilizing) speculative activities. Further efforts

at modelling explicitly the interaction of credit, bubbles and monetary policy

would seem highly welcome.

What does the empirical evidence have to say about the impact of mon-

etary policy on asset price bubbles? It is clear that any empirical analysis

of that link faces many challenges. Firstly, the diffi culty (or, some may say,

impossibility) in identifying the bubble component of an asset certainly does

not facilitate the task. Secondly, any observed comovement between asset

prices and policy rates may be distorted by the presence of reverse causality,

if the central bank does indeed adjust the interest rate in response to asset

price movements.

Those caveats notwithstanding, I find it informative to take a look at

the the behavior of the interest rate and the relevant asset price during three

episodes of U.S. history generally viewed (at least ex-post) as associated with

the presence of a large and growing bubble, which subsequently burst: (i)

the stock market boom previous to the Great Crash of October 1929, (ii) the

dotcom bubble of the second half of the 1990s, and (iii) the housing bubble

leading to the financial crisis of 2007-2008.

Figure 5 shows the Dow-Jones Industrial Stock Price Index along with

the discount rate at the Federal Reserve Bank of New York, over the period

1927:1-1929:9. Figure 6 displays the NASDAQ Composite Index together

with the Federal Funds rate target over the period 1997:1-2000:1. Finally,

Figure 7 shows the Case-Shiller House Price Index (Composite 20) and, again,

the Federal Funds rate target, now over the period 2002:1-2007:4. The three
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episodes share two key features. First, the corresponding asset price index

experiences a very fast, largely uninterrupted, rise which is hard to account

for by any plausible revision of fundamentals. The subsequent collapse (not

displayed in the Figures) reinforces the interpretation of much of that rise

as resulting from a bubble. Secondly, in the three episodes the asset price

boom is eventually accompanied with a substantial rise in the policy rate.

The latter might have been partly intended to counter the growing bubble.

Most importantly, however, for the purposes of the present paper, is the ob-

servation that the large increase in the policy rate (whatever its motivation)

does not seem to have any significant impact on the path of asset prices.20

That observation would seem to be at odds with the presumptions behind

the "leaning against the wind" view, namely, that a hike in interest rates

should help prick (or at least) disinflate any developing bubble (in addition

to having an adverse side effect on the asset’s fundamental). On the other

hand it seems to be consistent with the predictions of the model above, ac-

cording to which a rise in the interest rate will generally enhance the growth

of the bubble and, if the latter is suffi ciently large, that of the asset price as

well.

8 Concluding Remarks

In order to do so I have developed a highly stylized overlapping generations

model with monopolistic competition and price setting in advance. The over-

20Thus, the Fed’s attempt to stop the rise in stock prices through a series of interest
rate increases 1928-1929 has been interpreted by a number of authors as the main factor
behind the initial decline in activity during the Great Depression (see Bernanke (2002)
and references therein).
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lapping generations structure allows for the existence of asset price bubbles in

equilibrium, as in the models of Samuelson (1958) and Tirole (1982). The in-

troduction of nominal rigigities implies that monetary policy is not neutral.

In particular, by influencing the path of the real interest rate, the central

bank can affect real asset prices (including those of bubbly assets) and, as a

result, the distribution of consumption across cohorts and welfare.

Two main results have emerged from the analysis of that model. First,

contrary to conventional wisdom, a stronger interest rate response to bub-

ble fluctuations (i.e. a "leaning against the wind policy") may raise the

volatility of asset prices and of their bubble component. Secondly, the opti-

mal policy must strike a balance between stabilization of current aggregate

demand—which calls for a positive interest rate response to the bubble—and

stabilization of the bubble itself (and hence of future aggregate demand)—

which would warrant a negative interest rate response to the bubble. If the

average size of the bubble is suffi ciently large the latter motive will be dom-

inant, making it optimal for the central bank to lower interest rates in the

face of a growing bubble.

Needless to say the conclusions should not be taken at face value when it

comes to designing actual policies. This is so because the model may not pro-

vide an accurate representation of the challenges facing actual policy makers.

In particular, it may very well be the case that actual bubbles are not of the

rational type and, hence, respond to monetary policy changes in ways not

captured bt the theory above. In addition, the model above abstracts from

many aspects of actual economies that may be highly relevant when designing

monetary policy in bubbly economies, including the presence frictions and
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imperfect information in financial markets. Those caveats notwithstanding,

the analysis above may be useful by pointing out an potentially important

missing link in the case for "leaning against the wind" policies.
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Appendix

Appendix 1.

Combine (23), (25) and (33) to yield:

Et−1{r̂t} = εB(1 + β)REt−1{b̂t} (40)

Taking expectations on both sides of the interest rate rule:

Et−1{r̂t} = φππt + φbREt−1{b̂t} (41)

Combining both yields

πt = −(R/φπ) (φb − εB(1 + β))Et−1{b̂t}

Letting εt ≡ Rξt + (1−R)ût, note that

r̂t = Et−1{r̂t}+ (r̂t − Et−1{r̂t})

= εB(1 + β)REt−1{b̂t}+ φbεt

= εB(1 + β)R(Rb̂t−1 + (1−R)ût−1 + r̂t−1) + φbεt

It follows that

(1− εB(1 + β)RL)r̂t = εB(1 + β)R(Rb̂t−1 + (1−R)ût−1) + φbεt

Combining the previous result with the bubble difference equation (1 −

RL)̂bt = (1−R)ût−1 + r̂t−1 + ξt yields:

b̂t = χb̂t−1 + (φb + 1)(1−R)ût−1 + ξt + (φb − εB(1 + β))Rξt−1

where, as above, χ ≡ R(1 + ε(1 + β)B) is assumed to be between zero and

one.
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Note that the predictable component of the bubble follows the process

Et−1{b̂t} = χ(Et−2{b̂t−1}+ ξt−1) + (φb + 1)(1−R)ût−1 + (φb − εB(1 + β))Rξt−1

= χEt−2{b̂t−1}+ (φb + 1)εt−1

Accordingly, and letting b̂et ≡ Et−1{b̂t}

var{b̂et} =
(φb + 1)2

1− χ2 σ2ε

where σ2ε ≡ (1−R)2σ2u +R2σ2ξ .

Finally, and using the fact that q̂Bt = R(̂bet + ξt) + (1−R)ût = b̂et + εt, we

have

var{q̂Bt } =

(
R2(φb + 1)2

1− χ2 + 1

)
σ2ε

Note also that we can now write the equilibrium process for inflation as:

πt = −(R/φπ) (φb − εB(1 + β)) b̂et

= χπt−1 − (R/φπ) (φb − εB(1 + β)) (φb + 1)εt−1

Note also that

q̂Ft = −r̂t

= −φππt − φb(Rb̂et + εt)

= −εB(1 + β)Rb̂et − φbεt

Thus,

var{q̂Ft } =

(
(εB(1 + β)R)2(φb + 1)2

1− χ2 + φ2b

)
σ2ε

Appendix 2
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Goods market clearing implies

0 = q̂Ft + βRd̂t + εB(1−R)ût + εB(1 + β)Rb̂t

= −r̂t + βRd̂t + εB(1−R)ût + εB(1 + β)Rb̂t

Using the fact that r̂t = (r̂t−Et−1{r̂t})+Et−1{r̂t} = φbεt+εB(1+β)Rb̂et ,

one can write

βRd̂t = φb(Rξt + (1−R)ût) + εB(1 + β)Rb̂et − (εB(1−R)ût + εB(1 + β)Rb̂t)

= (φb − εB(1 + β))Rξt + (φb − εB)(1−R)ût

Letting ΓB ≡ εB
εB+1

we have

βRĉ2,t = βR((1− ΓB)d̂t + ΓB b̂t)

= (1− ΓB)βR(d̂t + εBb̂t)

= (1− ΓB)((φb − εB(1 + β))Rξt + (φb − εB)(1−R)ût + βRεBb̂t)

= (1− ΓB) ((φb − εB)εt + βRεBb̂et

implying

var{ĉ2,t} ∝
[
(φb − εB)2 +

(βRεB)2(φb + 1)2

1− χ2

]
σ2ε
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Figure 1.  Bubbly Steady States 
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Figure 2. Monetary Policy and Bubble Volatility 
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Figure 3. Monetary Policy and the Volatility of 
Stock Prices and its Components 
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Figure 4. Monetary Policy and Welfare Losses 
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Figure 5.  Optimal  Bubble Coefficient 
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Figure 6. Monetary Policy and the  
1928-29 Stock Market Bubble 
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Figure 7.  Monetary Policy and the Dotcom Bubble 



Figure 8.  Monetary Policy and the Housing Bubble 
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